TT honlapja
Editing of transferred homepage in progress, nothing guaranteed to
work.
While I collect the will to put something
useful here, please do try a small bridge-building
game or a variaton of box puzzles and mail me with any feedback, comments,
suggestions, bugs, whatever you want.
Minden esetre: pont-összekötő,egy
egyszerű JavaScript játék (ez meg egy másik: szókirakó),
légy szíves, próbáld ki és írd meg nekem a
véleményedet róla.
Adatlap
Matematikai Intézet honlapja
Construction Area
Actually, I'll try to do something with this mess.
Planned sections:
Teaching is in contact mode.
Concurrent communication platform is
Microsoft Teams, asynchronous communication and assessment platform is Moodle.
Szűcs András topológia jegyzete: letöltés
Juhász András topológia sáv írott jegyzete: [1] [2] [3] [4]
Courses in fall 2024:
- Bevezetés a topológiába gyakorlat (bevtopm22ga),
az előadást tartja: Stipsicz
András.
- Csütörtök 12-14 (D 4-713)
- Bevezetés a tudományos programozásba gyakorlat
(bevtudprogm22ga), az előadást tartja: Prokaj Vilmos.
- Csütörtök 16-18 (D 3-105)
- A gólyatáboros
balf
szervezés miatt a gyakorlatok csak a második héten (szeptember 19.)
kezdődnek!
- Differenciáltopológia (diftop1u0um17em és diftop1u0um17gm)
Courses in spring 2024
- Algebrai topológia (algtopm22ea és algtopm22ga)
- Előadás: kedd 830-1000 (D 7-103)
- Gyakorlat: szerda 1415-1545 (D 7-103)
- Algebraic and Differential Topology (aldito1u0um17em and aldito1u0um17gm), lectures held in pair with László Fehér.
- Lectures: Monday 12-14, Wednesday 12-14?
- Practice: to be decided later.
Courses in fall 2023
- Bevezetés a topológiába gyakorlat (bevtopm22ga),
az előadást tartja: Fehér
László.
- Bevezetés a tudományos programozásba gyakorlat
(bevtudprogm22ga), az előadást tartja: Kurics Tamás.
- Hétfő 1400-1530 (D 3-105)
- Házi feladatok beadási határideje:
szombatról vasárnapra éjfél.
Differenciáltopológia
Courses in spring 2023
- Algebrai topológia előadás (algtop1m0_m17ex), a gyakorlatot (algtop1m0_m17gx) tartja: Kubasch Alexander.
- Hétfő 1405-1535 (D 5-501)
- Differenciálegyenletek 2 gyakorlat (difegy2x0_m20gx), az előadást (difegy2x0_m20ex) tartja: Karátson János.
- Első ~6 alkalmat Csomós Petra tartja mindkét csoportnak, majd a további ~6-ot én.
- Csütörtök 1015-1145 (D 4-206) 1. csoport
- Péntek 1215-1345 (D 3-719) 2. csoport
- Algebraic and Differential Topology (aldito1u0um17em and aldito1u0um17gm), lectures held in pair with László Fehér.
- Wednesday 1215-1345 (D 0-408) lecture
- Thursday 1215-1345 (D 3-517) lecture
- Thursday 1600-1730 (D 0-408) practice
Courses in fall 2022
- Többváltozós analízis 1 gyakorlat
(mm5t2an7g), az előadást (mm5t1an7g) tartja: Keleti Tamás.
- Szerda 1015-1145 (D 3-306)
- Homology Theory/Homológiaelmélet előadás (homelm1u0um17em)
- Wednesday 815-945, (D 3-517)
- Differential Topology lecture/Differenciáltopológia előadás (diftop1u0um17em)
- Wednesday 1615-1745, (D 3-517)
- Differential Topology practice/Differenciáltopológia gyakorlat (diftop1u0um17gm)
- Thursday 1230-1400 (D 3-316)
Courses in spring 2022
- Algebrai topológia előadás (algtop1m0_m17ex),
gyakorlatot (algtop1m0_m17gx) vezeti: Csépai András.
- Hétfő 830-1000 (D 3-306)
- Gyakorlat: kedd 8-10 (D 3-306)
- Algebrai és differenciáltopológia előadás
(aldito0u0um17em)
- Kedd 830-1000 (D 3-110),
csütörtök 1400-1530 (online).
- Algebrai és differenciáltopológia gyakorlat
(aldito0u0um17gm)
- Szerda 1015-1145 (D 3-208)
Courses in fall 2021
- Analízis 3 gyakorlat (analiz3a0_m17ga)
- Szerda 10-11 (D 3-306), csütörtök 14-16 (D 3-316)
- Differenciáltopológia előadás
(diftop1u0um17em)
- Differenciáltopológia gyakorlat (diftop1u0um17gm)
Courses in spring 2021
- Algebrai topológia előadás (algtop1m0_m17ex)
- Algebrai topológia gyakorlat (algtop1m0_m17gx)
- Algebrai és differenciáltopológia előadás
(aldito1u0um17em), társelőadóként Fehér
László mellett.
- Időpontkeresés folyamatban
- Moodle
- Algebrai és differenciáltopológia gyakorlat
(aldito1u0um17gm)
Courses in fall 2020
- Bevezetés a topológiába gyakorlat
(bevtop1m0_m17gx); előadást (bevtop1m0_m17ex) tartja: Fehér
László.
- Analízis 3 gyakorlat (analiz3m0_m17ga); előadást
(mm1c1an3m) tartja: Keleti Tamás.
- Csütörtök 13:00-13:45
- Péntek 12:00-13:30
- Differenciáltopológia előadás (diftop1u0um17em)
- Az angol nyelvő kurzus (2-es kurzuskód) veendő fel
- Hétfő 10:15-11:45
- Differenciáltopológia gyakorlat (diftop1u0um17gm)
- Az angol nyelvő kurzus (2-es kurzuskód) veendő fel
- Szerda 8:30-10:00
Valós analízis előadás (Real Analysis lecture)
(valfvb1u0_m19ex)
Valós analízis gyakorlat (Real Analysis practice)
(valfvb1u0_m19gx)
Courses in spring 2020
- Algebrai és differenciáltopológia gyakorlat
(aldito1u0um17gm); előadást (aldito0u0um17em) tartják:
Fehér
László és Szűcs
András.
- Péntek 12:00-13:30, Rényi Intézet Kutyás terem
- Algebrai topológia gyakorlat (algtop1m0_m17gx);
előadást (algtop1m0_m17ex) tartja: Szűcs András.
- Csütörtök 14:10-15:40 D 0-220
- Bevezető analízis tanároknak gyakorlat (mm5t2an2), 4. csoport; előadást
(mm5t1an2) tartja: Keleti
Tamás.
Allen Hatcher's page.
Okay, how can I not start by this one? The guy's written darn good books
about algebraic topology and he put them up for everybody to use for
free! I say, that deserves at least a visit to his homepage (and
chances are, you will be staying there for quite a while).
Self-promotion is allegedly an important pastime. So eventually a list of my
papers should be linked here as well. If you're still reading and are
actually interested, here's a short summary:
- ELTE TTK
maths MSci theses have mine, check under year 2004. It's about some
silly messing with level sets (point preimages) of a somewhat weird class of
mappings. There are some really nice results about them (e.g. this one), and thankfully there
are also relatively accessible (if practically unusable) problems that help
young people construct their theses.
- Cobordisms of fold maps and
maps with prescribed number of cusps, contribution to the work of
András Szűcs and Tobias Ekholm. This has been published in Kyushu Journal of
Mathematics 61/2 (2007), pp. 395—414, and it's about observing how
do the cobordism groups of
manifolds or mappings change if we restrict ourselves solely to "nice" maps
having only regular and fold points.
- Cobordisms of fold maps of 2k+2-manifolds into
R3k+2, Geometry and topology of caustics, Banach Center
Publications vol. 82 (2008), pp. 209—213 (proceedings of the Caustics
'06 symposium). Same thing, in
another dimension, when the calculations are not quite as simple and easy
since the objects to avoid are whole curves of cusps and not just discrete
points.
- Calculation of the avoiding ideal for
Σ1,1, Algebraic Topology — Old and New, Banach Center
Publications vol.85 (2009), 307—313. Another path for attacking the same problem,
and in the complex setting it actually works all the time. In the real
setting, well, fold maps is the most complicated case where it still works
that I'm aware of.
- Bordism groups of fold maps (joint with András
Szűcs), Acta Mathematica Hungarica 126/4 (2010), pp. 334—351. The
concept of classifying spaces is what makes singular cobordisms conceptually
very nice, one can translate singular cobordisms to homotopies in the
classifying space. The one tiny problem with this is that classifying spaces
are hard to construct, and after construction we need to calculate
their homotopic properties, which is typically hard in itself (just think
about the homotopy groups of spheres, and spheres are not complicated to
construct). So here we do some calculations in the smallest classifying
space that has not been understood by the great figures of the past, who did
consider the classifying space for immersions. We can only do homological
calculations, but at least those do work and yield some geometric results.
- Fibration of classifying spaces in the cobordism theory of
singular maps, Proceedings of the Steklov Institute of Mathematics vol.
267 (2009), pp. 270—277. I am fond of the result of this paper,
because it is a geometric proof of a very useful fact that previously only
had a quite contrived proof. The statement is that when one constructs
classifying spaces for a set of singularities and then adds exactly one
other monosingularity, then there is a fibration involving the two
classifying spaces and the space that classifies the "new"
singular locus as a decorated immersion. The use of this lies in the fact
that it allows calculations with homotopy groups, which fibrations handle
nicely, of classifying spaces, whose standard construction is a pile of
gluings and thus not conductive to homotopic calculations at all.
Additionally, making the proof simpler also allows extending it to settings
where the original proof didn't work, so good things all around.
- Calculation of the obstruction ideals of Morin maps,
Periodica Mathematica Hungarica 63/1 (2011), pp. 89—100. Here we get a
set of relations among the characteristic classes of the virtual normal
bundle of a map with only some Morin singularities, that is, relatively
easily computable obstructions to the existence of a deformation of a given
map without sufficiently ugly singularities. This set is actually maximal if
we consider not only honest maps, but also fiber-preserving bundle maps. The
drawback is that we only look at cohomology with modulo 2 coefficients, and
there's the slight aesthetic problem of these obstructions being mostly due
to the exclusion of non-Morin singularities. I don't know how to enhance the
calculation to address maps that only avoid swallowtails
(Σ1,1,1), for example.
- On bordism
and cobordism groups of Morin maps (joint with Endre Szabó and
András Szűcs),
Journal of Singularities, vol. 1 (2010), pp. 134—145. A pretty
technical paper, we get lucky calculating the rational homology of the
classifying space of Morin maps, and consequently get results for rational
homotopy groups and the rational cobordism groups.
- Proof of a conjecture of V. Nikiforov, Combinatorica 31/6
(2011), pp. 739—754. Nothing to do with topology, although the
inspiration did come from Morse theory and I would have liked to push that
analogy further than I finally managed to. I heard a friend of mine talk
about the conjecture, and under the influence of thinking about dense graph
limits I had the idea to work directly on the optimal limit of the question,
and there to test optimality locally under reparametrisations. It's slightly
annoying that in the end, one still needs to sift through a (luckily
small-dimensional) family of candidates, and this causes the method to
essentially fail in all the generalisations that I've tried so far.
- Relations among characteristic
classes and existence of singular maps (joint with Boldizsár
Kalmár), Trans.
AMS 364 (2012), pp. 3751—3779. Here we look at negative
codimensional maps (so the dimension of the source manifold is larger than
the dimension of the target), which are Boldizsár's speciality, not
mine. The main idea is to get calculable cohomological obstructions by first
eliminating the singularities of the fold or Morin map — by blowing up
the source along the singular set and perturbing the result —
and then tracking the restrictions obtained from now having a nicer map to
work with. There's a surprising amount of concrete calculations that can be
done that way, some may be doable in positive codimensional setting as well.
- Large 2-coloured matchings in
3-coloured complete hypergraphs, submitted to Electronic Journal of Combinatorics.
This is another paper far from my main competence, I attended a
combinatorics workshop, encountered the problem and it stuck in my head. The
proof I found is not very enlightening, but I harbour a faint hope that one day
similar problems may be attacked with the dense graph limit approach. That
would be awesome.
- Singularities and stable
homotopy groups of spheres I (joint with Csaba Nagy and András
Szűcs) and Singularities and
stable homotopy groups of spheres II (joint with András
Szűcs) apply the classifying space machinery in a case when the
classifying space does not become mind-bogglingly complicated. For that, one
needs singularities with few automorphisms, so we start with codimension 1
Morin maps, whose symmetry group is C2×C2,
require them to be cooriented (reducing the symmetry group to a single
C2), and finally asking for a trivialization of the kernel
bundle, eliminating homotopically nontrivial symmetries altogether. From
another point of view, these are exactly the projections of immersions into
one higher dimension, and this allows us to identify the gluing maps of the
classifying space (which describe what the less complicated singular points
do around more complicated singular points) with maps in a spectral sequence
associated to the filtration of the complex projective space CP∞
by the CPn, and those latter maps have been studied quite a lot.
- Symmetric Shannon capacity is the
independence number minus 1 does what it says on the tin: we consider
all collections of unlabeled (hence "symmetric") stones on the vertices of a
graph with two collections considered neighbours if one can move all the
stones at most to a neighbouring vertex to get from one collection to the
other, and determine the asymptotics of the independence number of the
resulting graph.
If you want a copy of either of those papers which don't have a link
attached to them, or just want to talk about maths (any maths, not only
analysis) please e-mail me.
Project Euler. Not really maths, more
compsci, but as long as I don't drag up something fun, it'll do. Maybe I
will be able to get my hands on anatomical images with the parabolic curves
drawn, like in the Hilbert-Cohn Vossen book, those would be fun, right?
Slitherlink, a fun
game that helps you discover homological phenomena.
Chaseway, a game seemingly
about railroad design, but beneath the thin veneer of normality there's the
gaping abyss of algebra.
Ordinal
Markup: an idle(ish) game involving ordinal numbers.
True
Exponential: this one is here less because of its ludic value (still
useful for anybody who's not sufficiently comfortable with exponentiation
and orders of magnitude though) and more because of the nice presentation.
I speak Pascal, C/C++, and to some extent, JavaScript and Python. I can also
use Excel to avoid using real languages when I'm lazy and the task at hand
is suitable.
Digraph6 plotter: enter Digraph6 string, receive a drawing of the graph
(feel free to move the vertices around).
Travel Cost Calculator for Pardus (unmaintained since forever):
The current state of affairs is
here. Press "Load map data" first, and "Process
map data" after the appropriate textbox gets populated. Aliases are not
maintained, but that's
something for active players anyway; feel free to roll your own list and use
that.
Sandbox for internal use
HTML Canvas test
Some nice music (no particular order):